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Abstract. Synchronization has been shown to be a valuable concept in the field of nonlinear dynamics
and dynamical systems in general. Deviation from perfect synchronization results from an interplay of
deterministic coupling forces and stochastic fluctuating forces. When the exact details of these two sources
of variance are unknown, it becomes useful to estimate them directly from data. To this end, we develop
a data analysis method for estimating parameters associated with these deterministic and stochastic
components. The method relies on separating their respective contributions to synchronization error.
We focus on the case where a slave system synchronizes with the future of a master system, so-called
anticipating synchronization.

PACS. 02.30.Ks Delay and functional equations – 05.45.Tp Time series analysis

1 Introduction

When two dynamical systems x and y are coupled, it be-
comes possible for those systems to synchronize [1]. One
particular form of synchronization requires that the differ-
ence between states of the two systems is minimized. The
difference between the states x(t) and y(t) may be zero
just in case the two systems are exactly synchronous in
time. It is also possible that this difference deviates from
zero while the difference between x(t − τ) and y(t) or the
difference between x(t) and y(t− τ) become zero, where τ
denotes a synchronization lag. Taking the signal x(t) as
our reference point in the former case we are dealing with
lagged synchronization, whereas in the latter case we have
anticipatory synchronization.

Synchronization (whether ordinary, lagged or antici-
patory) plays an important role in human-machine in-
teractions and master-slave systems in general [2,3]. The
synchronization error between master and slave depends
on the coupling between them and the perturbations to
which the slave is subjected. In particular, the variability
of the synchronization crucially depends on master-slave
coupling on the one hand and the coupling of the slave
to noise sources on the other hand [4]. Figure 1 illustrates
this issue.

a e-mail: nigel.stepp@uconn.edu

Fig. 1. Sources of synchronization variability. Synchronization
variability, or synchronization error, has two major contribut-
ing components: variability is increased due to stochastic forces
resulting from slave-noise process coupling, and decreased due
to deterministic forces resulting from master-slave coupling.

In the case of a master-slave that involves a unidi-
rectional coupling between master and slave – as shown
in Figure 2 – the two key parameters that are essential
for our understanding of the synchronization error and
the synchronization variability are the master-slave cou-
pling constant k and the constant g describing to what
extent the slave is affected by noise sources. The objec-
tive of our study is to show how k and g can be esti-
mated from time series data in the case of master-slave
systems that show the aforementioned anticipatory syn-
chronization. In fact, several recent studies [5–9], centered
around a data analysis method proposed by Friedrich and
Peinke [10], have been devoted to reconstructing from time
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Fig. 2. Master-slave-noise coupling arrangement. Master-slave
coupling parameter k and slave-noise coupling parameter g are
shown here in their relative arrangment around the slave.

series, deterministic and stochastic components, here k
and g. While ordinary and lagged synchronization have
been studied in this context [11,12], the anticipatory case
has not yet been addressed.

Synchronization in anticipatory systems, where the
evolution of the slave precedes that of the master, has been
examined in several previous studies [13–15]. The general
form for one case of anticipating synchronization is

d

dt
x = f(x)

d

dt
y = f(y) + k (x − yτ ) (1)

where yτ is defined to be y(t − τ). In the synchronized
state, y(t) corresponds to x(t+τ) – the slave anticipating1

the master.
In general, however, synchronization of anticipatory

systems exhibits variability. That is, on average, the state
of the slave at time t corresponds to the state of the mas-
ter at time t + τ , but at particular points in time the two
states will differ by some amount. We will refer to this
difference as the synchronization error. The variability of
synchronization error has been investigated in both simu-
lated and physical systems [4,15,16].

In equation (1) we layed out the general form for
systems which exhibit anticipating synchronization. As
noted, however, in general we expect a stochastic com-
ponent. Therefore, a more correct system of study has the
form

d

dt
x = f(x)

d

dt
y = f(y) + k (x − yτ ) + g Γ (2)

where x,y are L-dimensional state vectors (i.e. we have
x = (x1, . . . , xL), y = (y1, . . . , yL), f is a function, k a
coupling matrix, Γ is a normalized fluctuating force, and g
is a matrix of noise amplitudes. Finally, τ denotes a delay,
such that yτ (t) = y(t − τ).

Synchronization error, then, results from an interplay
between both the coupling force between master and slave

1 In the context of human-machine interactions, anticipation
is taken to be approximation of some future behavior, for in-
stance by maintaining a negative phase relationship.

Fig. 3. Anticipatory Synchronization Task. A dot oscillates at
the top of a screen (solid arrows). A joystick controls the mo-
tion of a second dot at the bottom of the same screen (dashed
arrows). The task consists of synchronizing the motion of the
two dots by manipulating the joystick. If the effect of the joy-
stick is delayed, however, then the oscillating dot must be an-
ticipated for synchronization to take place.

and the fluctuating force acting only on the slave (see
Fig. 1). In general, the error increases when the strength of
the coupling force decreases. Likewise, the error increases
when the strength of the fluctuating force increases. In
other words, the degree of synchronization variability is
determined by the strength of the master-slave coupling
and the strength of the fluctuating force acting on the
slave.

Therefore, the question arises: how can we quantify the
impacts of these two forces? In Section 2 we will develop a
time series analysis method that can be used to determine
simultaneously from a given data set the strength of the
coupling force between master and slave and the ampli-
tude of the fluctuating force that acts on the slave. Our
proposed data analysis methods will be applied to sys-
tems subjected to both natural boundary conditions and
periodic boundary conditions.

Being able to determine these parameters can be use-
ful for characterizing empirical data where the coupling
strength (or mechanism) is not obvious. Consider, for ex-
ample, an experimental setup such as the one described
in Figure 3. The figure shows a typical example of a hu-
man operator interacting with a machine using a tool.
In this example, the tool is a joystick, which the human
operator uses to control an indicator on a display. The
situation described here parallels the general dynamics of
equation (2), however the values of k and g remain elu-
sive. The data analysis method presented here provides a
systematic way to determine the values of k and g from
collected data.

2 Data analysis method

Assuming collected time series data has been produced
according to equation (2), our task is to estimate k and
g. We may work in time-discrete terms and assume that
we have experimental observations xn,yn with a sampling
interval Δ. In this case, the time-discrete evolution is ap-
proximately given by

xn+1 = xn + Δf(x)

yn+1 = yn + Δ {f(y) + k (xn − yn−m)} + g wn (3)
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where wn is a time-discrete fluctuating force that will be
approximated by Gaussian random numbers with vari-
ance Δ (i.e. by the increment of a multivariate Wiener
process with variance nΔt). And τ = mΔ. At issue is
to determine m, k, and g from experimental data xn, yn

given that the function f and the sampling interval Δ are
known.

The magnitude of the delay, m, can be estimated if we
make the assumption that our data has reached a steady-
state of synchronization. If this is the case, the cross corre-
lation of master and slave will be maximized at lag m, i.e.

covx,y(m) = max(covx,y(τ)) (4)

for lags τ . This estimation of m will be accurate as long
as the mean synchronization error approaches zero.

The similarity function [17] provides a second method
for the estimation of τ

S2(τ) =
〈[y(t + τ) − x(t)]2〉
[〈x2(t)〉〈y2(t)〉]1/2

. (5)

Similar in form to a covariance, S2 is tailored so that it is
minimum for the appropriate τ . In similar fashion then,
we choose m so that

S2(m) = min(S2(τ)) (6)

for lags τ . Both methods should pick similar values for
appropriate m.

Once the delay has been estimated, we turn to k and g.
As a first step, we introduce

un = yn+1 − yn − Δf(yn) (7)

and
zn = xn − yn−m. (8)

Then it follows that

un = Δk zn + g wn. (9)

We determine k from a linear regression analysis of un

with respect to zn. We assume that g is a diagonal matrix
with diagonal elements gii. We determine the parameters
gii by computing the average

g2
ii = Δ−1〈(un − Δk zn)2i 〉. (10)

The linear coupling force in equation (2) can be regarded
as the first expansion term of a Taylor expansion applied
to a more general nonlinear coupling force. In line with
this interpretation of the coupling force for a system sub-
jected to natural boundary conditions, we consider sys-
tems subjected to periodic boundary conditions for which
the coupling force is again given by the lowest nontrivial
expansion term of an appropriate expansion. In the case
of periodic systems, the expansion is a Fourier expansion
and the lowest order term corresponds to a sine function.

Consequently, we consider next anticipatory systems sub-
jected to periodic boundary conditions that assume the
form

d

dt
x = f(x)

d

dt
y = f(y) + k

⎛
⎝

sin(x1 − y1,τ )
· · ·

sin(xL − yL,τ )

⎞
⎠ + g Γ. (11)

The preceding analysis can be applied to this kind of sys-
tem as well. To this end, we need to replace equation (8) by

zn =

⎛
⎜⎝

sin(x1 − y1,τ )
...

sin(xL − yL,τ)

⎞
⎟⎠ . (12)

3 Examples

In the following examples, we apply the method to several
oscillatory systems. In general, oscillation is not required
for the method to work, however oscillatory systems are
of particular importance for a range of tasks including
industrial human-machine interactions.

3.1 Harmonic oscillatory source

We consider a slave that anticipates a harmonic oscillating
source such that the evolution equations are given by

d

dt
x = ω (13)

d

dt
y = ω + k sin(x − yτ ) +

√
QΓ (t)

where x(t), y(t) ∈ [0, 2π] are the running phase of master
and slave, respectively.

Such a system may reflect an experimental situation in
which participants are asked to track a harmonic oscillat-
ing target by maintaining zero relative phase, see Figure 3.
In this setup, there is a delay induced between a partici-
pant’s motion and the effect of that motion on the screen.
This delay makes it necessary that the participants an-
ticipate the master signal in order to synchronize with it.
A simulation of equation (13) is shown in Figure 4. As is
evident in the figure, the slave system has synchronized
with the future of the master system.

As mentioned in the introduction we expect that the
variances in general decrease as a function of k and in-
crease with Q. In order to study the dependency of the
variance on k and Q for illustrative purposes we prefer
to replace k with 1/k. Then, we expect that the variance
is a monotonically increasing function of both parameters
1/k and Q. The variance of the synchronization error as a
function 1/k and Q for a fixed delay τ is shown in Figure 5.

In order to evaluate the method’s performance, equa-
tion (13) is simulated at several values of k and Q. For
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(a) (b)

Fig. 4. Simulation of a harmonically oscillating master (solid) and slave (dashed) in (a) low and (b) high noise conditions. For
the low noise condition, Q = 0.1, otherwise Q = 20.
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Fig. 5. Variance of the synchronization error e(t) = y(t− τ )−
x(t) as a function of 1/k and Q.

each resulting time series, the method results in a pair
of k and Q estimates. These estimates are summarized in
Figure 6.

The plots show that estimates of k vary directly with
the simulated values, while having no appreciable depen-
dence on Q. Similarly, estimates of Q vary directly with
simulated values, with no dependence on k. In short, Fig-
ure 6 reveals that the estimated k and Q values are ap-
proximately equivalent to the original k and Q values used
to generate the data.

3.2 Nonharmonic oscillatory source

If the oscillations of master and slave are non-harmonic,
then the running phase will increase nonlinearly as a func-

tion of time. Let us consider a system in which the phase
dynamics slows down close to 0 and 180 degrees and
speeds up at 90 and −90 degrees. A master-slave system
exhibiting such as behavior is defined by

d

dt
x = ω − δ sin(2x) (14)

d

dt
y = ω − δ sin(2y) + k sin(x − yτ ) +

√
QΓ (t)

with δ > 0. A simulation of this model is shown in Fig-
ure 7. The variance of the synchronization error as a func-
tion of the parameter 1/k and Q is shown in Figure 8.
Again, the slave has synchronized with the master such
that it maintains a negative relative phase relationship.

We applied the data analysis method to computer gen-
erated data sets. The results, shown in Figure 9, again
show that estimates of k and Q agree with simulated val-
ues, while lacking dependence on one another.

3.3 Chaotic systems

The oscillation of the master and slave may go beyond
being merely non-harmonic; oscillations may be chaotic
as well. A standard chaotic oscillator we may consider is
the Rössler system [18]

d

dt
x1 = −x2 − x3

d

dt
x2 = x1 + ax2

d

dt
x3 = b + x3(x1 − c). (15)

In order to simplify notation, let fR(x) denote the function
mapping the 3-dimensional state vector x to equation (15).
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Fig. 6. Parameters k (left panel) and Q (right panel). Reconstructions versus originals for several parameters delays τ .
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Fig. 7. Simulation of a nonharmonically oscillating master
(solid) and slave (dashed) in (a) low and (b) high noise condi-
tions. For the low noise condition, Q = 0.1, otherwise Q = 20.
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Fig. 8. Variance of the synchronization error e(t) = y(t− τ )−
x(t) as a function of 1/k and Q.

In this way, we may retain familiar notation defining the
master-slave system

d

dt
x = fR(x) (16)

d

dt
y = fR(y) + k(x − yτ ) +

√
QΓ,

where k is an appropriate coupling matrix.
A simulation of this model is shown if Figure 10. The

variance of the synchronization error as a function of the
parameters k and Q is shown in Figure 11.

We applied the data analysis method to computer gen-
erated data sets. The results are shown in Figure 12. In-
terestingly, the variability of a chaotic time series works to
the method’s advantage. Again, the estimate of k shows no
dependence on Q, but near perfect correspondence to k.
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Fig. 9. Parameters k (left panel) and Q (right panel). Reconstructions versus originals for several parameters δ.
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Fig. 10. Simulation of a chaotically oscillating master (solid)
and slave (dashed) in (a) low and (b) high noise conditions.
For the low noise condition, Q = 0.1, otherwise Q = 20.
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Fig. 11. Variance of the synchronization error e(t) = y(t −
τ ) − x(t) as a function of 1/k and Q.

Likewise, the estimate of Q is independent of k, but cor-
responds to Q.

4 Conclusions

The method developed above allows characterization of
experimental data in cases where components can be de-
scribed as equation (2). This situation obtains, for in-
stance, whenever one system (so-called slave) is follow-
ing a signal while overcoming some delay. This situation
is exemplified in Figure 3. We expect that error in syn-
chronization is a window into the dynamical particulars
of the system which has produced a particular time series.
Specifically, synchronization error depends on the coupling
between slave and master on the one hand, and the cou-
pling of slave to noise sources on the other. Therefore, we
only arrive at an understanding of synchronization error
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Fig. 12. Parameters k (left panel) and Q (right panel). Reconstructions versus originals for several parameters δ.

if we have estimates of the respective coupling parame-
ters at our disposal. The method above provides a way to
estimate these parameters.

Our method, however, requires a priori knowledge of
the dynamics of the slave system in question. When diffi-
cult to model systems, e.g. human subjects, are involved
this is not an optimal situation. If the slave system can
be, at least roughly, modelled as a second order differential
equation of the form

d

dt
y1 = y2

d

dt
y2 = h(y1) (17)

then the function h can be estimated with relatively little
effort.

The useful feature of these systems is that dy1/dt is
always the same, namely y2. Given a time series of y1 for
the slave, we can recover y2 by simply taking the deriva-
tive. From here, the method follows as before. Systems of
this form span many oscillatory systems which might be
of interest. If h(y1) = −y1, for instance, we have a simple
harmonic oscillator, but h may be arbitrarily complicated.

Therefore, the assumption stays the same, but in a
great many cases we may make the assumption small. It
is left to be investigated how far this assumption may be
pushed. That is, given a slave system which cannot be
modeled as equation (17), to what extent are the results
corrupted by approximating it as so.

This particular arrangement appears to apply well to
the exemplar experiment depicted in Figure 3. In this case,
the master is known completely, since it is generated. The
participant, in general, has unknown dynamics. There is
experimental evidence, however, that the dynamics of hu-
man coordination are approximated by some second order
differential equation [19–21].
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