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Members of all five kingdoms (Monera, Protista, Fungi, Plantae, and Animalia)
exhibit some level of anticipatory behavior. Such generality of phenomenology
suggests generality of principle. Beginning from the ubiquitous concept of syn-
chronization, the phenomenon of anticipating synchronization is taken as can-
didate for such a principle. Anticipating synchronization is placed within the
larger context of anticipatory systems that do not employ an internal model for
explicit prediction of future states (weak anticipation), but rely on lawful, reac-
tive behavior that places a system in implicit relation to the future of another
(strong anticipation). The beneficial effect of delayed feedback in this regard is
discussed and a new, general form for anticipatory coupling is developed. This
general form allows for the specification of certain classes of anticipatory systems
with differing phenomenology. Two experiments instantiate two of these coupling
classes and establish the phenomenology of anticipatory behavior in human sub-
jects. As an initial step towards discovering a more general anticipation principle,
the parallels between theoretical and empirical behaviors are discussed. Finally,
the implications for anticipation as an element of organism-environment dynam-
ics lead to Liquid State Machine reservoirs as a possible model system and tool
for the investigation of important properties of anticipatory systems.
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1 Introduction

1.1 Historical Concerns

Gibson (1966b, 1966a, 1979/1986) frequently expressed concern with the uses of,
and interpretations of, terms such as “expectation” and “anticipation”. James
(1890/2007), did likewise nearly a century before, complaining that “psychologi-
cal time” is not confined to an infinitesimal present. Together, James and Gibson
present a unified front against a view of both space and time as discrete, elemen-
tary containers. Instead, both advocated an idea of an organism’s awareness of
its context within nested, dynamic surroundings.

If perception extends into the past and future, as Gibson and James observed,
then by virtue of what is the future accessible? The ecological study of perception
and action makes a serious commitment to perception-action without mediation
(e.g., Turvey, Shaw, Reed, & Mace, 1981). At the same time, perception-action
is not isolated to the knife’s edge of the present. Thus, the ecological study of
perception and action must pay mind to future and past; perhaps by disposing
of or redefining those very concepts.

1.1.1 The fiction of the specious present

James (1890/2007, p. 606) sums up the primary issue of the present rather
succinctly, “The knowledge of some other part of the stream, past or future,
near or remote, is always mixed in with our knowledge of the present thing.”
James makes the point that the present has duration; he goes on to say that
the instantaneous present is “an altogether ideal abstraction”. In his words, “the
practically cognized present is no knife-edge, but a saddle-back, with a certain
breadth of its own on which we sit perched, and from which we look in two
directions into time.” That is, “the present” is a vantage point in a more than
analogous comparison with spatial perception. James (1890/2007, p. 610) also
warms to the idea of painting perception of time on the same canvas as space,
“When we come to study the perception of Space, we shall find it quite analogous
to time in this regard. Date in time corresponds to position in space. . . .”

The benefit of such a perspective is that with the right principles of percep-
tion, time and space become equally manageable. The governing intuition of
the present work is that Gibson (1966b, 1979/1986) describes those right princi-
ples. While he differs from James in his willingness to treat time and space, or
sequence and pattern, as the same, the principles he lays out for perception of
surface layouts should apply equally to a temporal dimension.

1



1 Introduction

1.2 Strong Anticipation

Again, the problem is that ecological psychology requires a theory of anticipation
that does not resort to a mediating model. In fact, it requires this for its theory of
perception to be consistent. An attractive possibility is a theory that derives its
power not from internal models, but from appropriate coupling and lawfulness.
Dubois (2001) distinguishes between prediction of the future given a model, la-
beled weak anticipation and prediction of the future without a model—and relying
instead on systemic lawfulness—labeled strong anticipation. If it exists, so-called
strong anticipation already resembles an Ecological account of anticipation.

As defined by Dubois (2001) and as elaborated by Stepp and Turvey (2010),
strong anticipation is a relatively abstract concept. So far, a useful entry point into
this domain has been the more concrete anticipating synchronization (H. U. Voss,
2000). Briefly, anticipating synchronization is a phenomenon of nonlinear dynam-
ical coupling resulting in anticipation—not from explicit prediction, but from the
coupling itself. As such, anticipating synchronization is considered to be an in-
stance of strong anticipation (Stepp, Chemero, & Turvey, 2011; Stepp & Turvey,
2008, 2010). One class of dynamical systems that robustly exhibits anticipating
synchronization is

ẋ = f(x)

ẏ = g(y) + k (x− yτ )
(1.1)

where f and g are intrinsic dynamics of systems x and y respectively, k is cou-
pling strength, and yτ represents delayed feedback. Delayed feedback of the type
in Eq. (1.1) results in a minimization between the states x and yτ . That is,
minimization between the current state of x and a previous state of y. If the
difference between these two states is successfully minimized, then it must be the
case that the difference between the current state of y and a future state of x is
also minimized. In this way, y comes to be synchronized with the future of x.

An example of anticipating synchronization is shown in Fig. 1.1. Here, f corre-
sponds to the Rössler oscillator and g to a simple linear spring, as in the system
below.

ẋ1 = −x2 − x3
ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c)
(1.2)

ẏ1 = y2 + k (x1 − y1,τ )

ẏ2 = −wy1
(1.3)

1.2.1 Strong Anticipation in Humans

In order to test the consistency of this approach in explaining human behavior,
Stepp (2009) investigated anticipation in a manual tracking task. In this ex-
periment, a target moved on a computer display in a chaotic elliptical pattern
specified by the x1 and x2 states of Eq. (1.4). Parameters α and β allow the

2
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Figure 1.1: A Rössler attractor (x1, solid) driving a linear spring (y1, dashed)
according to Eqs. (1.2) and (1.3). The anticipating synchronization
arrangement enables the driven system, after a transient of a few
cycles, to anticipate the driver.

tuning of frequency; a, b, and c are parameters typical of the Rössler attractor
comprising states x3, x4, and x5. Participants were tasked with tracking this
target by controlling a cursor with a hand-held stylus. Varying delay between
movement of the stylus and movement of cursor also varies the degree to which
participants must anticipate the motion of the target.

ẋ1 = x2

ẋ2 = −
(

2π
(x3
α

+ β
))2

x1

ẋ3 = −x4 − x5
ẋ4 = x3 + ax4

ẋ5 = b+ x5(x3 − c)

(1.4)

Stepp (2009) found that human behavior in this task is consistent with behavior
predicted by Eq. (1.1). Two kinds of experiments, similar in design to that of
Stepp (2009), would provide useful extensions of the preceding finding. Each is
previewed below.

An experiment on continuous tracking (Experiment 1). In a tracking experi-
ment, participants view a computer display showing a moving target. In order to
reduce the space of possible explanation, the trajectory of the target is specified
by the x1 state of Eq. (1.4). In this way, participants are not able to anticipate
by, for instance, matching frequency then maintaining a phase difference. Addi-
tionally, since Eq. (1.4) is not periodic, a phase lag is properly distinguishable
from a phase advance. The display also includes an object that the participant
controls by moving a stylus across a pressure sensitive tablet; this object is the
participant’s cursor.

3



1 Introduction

Figure 1.2: Temporal relationships in a navigation paradigm. The black keyhole
shape represents the participant’s position. The point at which the
middle of the road scrolls past this cursor at time t is x(t). The
position of the participant’s hand is assumed to be some intended
position subject to reaction time delay τr, y(t− τr). If the position of
the cursor is subject to additional delay τd, the location of the cursor
is y(t− τr − τd). A point on the path corresponds to a future value of
x, namely x(t+ τm).

The participant’s task is to intercept the target with a stream of upward moving
dots emitted from the cursor. Speed of these dots determines the amount that a
participant must anticipate in order to succeed at the task. Time series data of
target and cursor motion can then be subjected to cross-correlation analysis and
model comparison.

An experiment on navigation (Experiment 2). An experiment of the first kind
is a test of what kinds of models can account for simple tracking behavior in hu-
mans. A richer experience for the participant allows the experimenter to connect
with many more facets of ecological theory. For example, a winding path can be
calculated according to the x1 state of Eq. (1.4). A slice of this time series can
be presented to the participant as a roadway using a perspective transform. The
speed of a virtual vehicle along the path can be fixed, and direction of travel can
be controlled using a stylus and tablet. Horizontal position of the stylus on the
tablet can be mapped to a steering angle in the interval θ radians. The charge
for the participant is to keep the vehicle “on the road”.

This rudimentary driving simulator adds an additional degree of freedom for the
participant. Since the path has extent, altering one’s gaze to look further down
the path allows one to look further, in a sense, into the future. The temporal
relationships between various components of this paradigm are shown in Fig. 1.2.

An eye tracker can used to capture the direction of the participant’s gaze, trans-
formed into on-screen coordinates. The vertical gaze position, with appropriate

4



1.2 Strong Anticipation

Short Short

LongLong

Figure 1.3: Two ways to have long and short paths within a network of interacting
nodes.

transformation, can be made to correspond to τm as described in Fig. 1.2. Results
from an experiment of this kind, which are focused on a particular treatment of
anticipation, can be put into context with other treatments within the steering lit-
erature (Kim & Turvey, 1999; Land & Horwood, 1995; Wilkie, Wann, & Allison,
2008).

1.2.2 Multiple Time Scales

In the theory and experiments introduced above, the power of a single feedback
delay is evident. This single delay allows anticipation on a single time-scale.
That is, for delay τ anticipation up to τ is possible. Further, the theory and
experiments introduced above focus on a single master system, perhaps with
its own characteristic time scale. In a more realistic vein, thinking of a real
perceiving-acting organism or agent, there are likely to be an indefinite number
of possible “master” systems to choose from–each with some set of characteristic
time scales.

From a network perspective, one may conceptualize delayed feedback as a single
signal propagating along two paths, a slow path and a fast path. One way to
accomplish this, if the signals propagate at the same speed, is for one path to be
longer than the other. It is also possible for one path to contain more segments
than the other. In this latter case it is possible to consider networks where
propagation delay within a segment is negligible but propagation from segment
to segment takes some amount of time. For a schematic description, see Fig. 1.3.

For these systems, delay time is equivalent to difference in segment number.
That is, if the fast path is 3 segments, the slow path might be 8 segments, resulting
in a 5-segment delay.

In order to move from simple dynamical systems to embedded, complex sys-
tems and communities, the lessons learned from theory and experiment should be
applied at the system level. A convenient structure for speaking of organism and
environment relations at the system level is the so-called CES model (Mahner
& Bunge, 1997). This model seeks to minimally describe a system in terms of
components (C), environment (E), and structure (S). The CES model, however,
is a static description. To extend the model to a dynamical system, Frank (2010)
takes a tack similar to Beer (1995) and writes CES in a dynamical way. This

5



1 Introduction

dynamical CES, or DCES, maintains a system level description, but allows for
this description to change over time.

Judging by some low-level communities of organisms that show anticipatory
behavior (such as amoeba, Saigusa, Tero, Nakagaki, & Kuramoto, 2008), another
attractive model system is randomly connected recurrent networks, of which liq-
uid state machines are a common example. A liquid state machine (Maass,
Natschläger, & Markram, 2002; Burgsteiner, Kröll, Leopold, & Steinbauer, 2007),
or LSM, is a randomly connected graph, where nodes receive time varying input
from their incoming connections and produce time varying outputs on their out-
going connections. While similar in principle to a neural network, LSMs are much
more abstract and are not necessarily meant to be analogous to a biological net-
work of any sort. Being randomly connected, LSMs are recurrent. Additionally,
connection gains or weights are fixed upon creation of the network. The structure
of LSMs results in a highly non-linear spatio-temporal pattern among the nodes
with even a single input. The main graph portion of an LSM is known as its
reservoir, activation spreading through the graph in analogy to ripples spreading
on the surface of a liquid. Due to these properties, the reservoirs of an LSM are
prime candidates for investigation into the emergence of anticipation.

The LSM concept appears to fit naturally into the CES framework. The po-
tential benefit of such a fit follows from the expectation that the anticipatory
dynamics described above are encapsulated in an LSM reservoir. Accordingly,
articulating LSMs in the CES model could provide a way to ground those phe-
nomena to the minimal foundation that the model represents.

6



2 Generalized Anticipatory Coupling
Function

2.1 Formal Description

In one of the original descriptions by H. U. Voss (2000), anticipating synchroniza-
tion results from two dynamical systems coupled via a particular coupling func-
tion. Generally we may consider coupling to come from some function h(x, y, t),
where in Eq. (1.1),

h(x, y, t) = k(x(t)− y(t− τ)) (2.1)

In Eq. (2.1), there exists a single delayed feedback to y, which is coupled to a
single point in time (the current time) of x. As suggested in Chapter 1, however, a
richer feedback and coupling structure is possible by providing more complicated
or general coupling functions. In the case of delayed feedback, we may recognize
that may take on an arbitrarily long value, or even multiple values. Formally,
having multiple instances of delayed feedback is represented as a sum of many
couplings. Each coupling has the same form as Eq. (2.1). For a set of discrete
delays, there are as many terms in the sum as delays. Generally, however, the
space of possible delays is continuous, and Eq. (2.1) can be extended to

h(x, y, t) =

∫ ∞
0

K(s) (x(t)− y(t− s)) ds (2.2)

where K(s) is now a coupling strength function, rather than a simple gain factor,
and s takes on values of delay in y. Such an arrangement is formally similar to a
distribution of random delays (Cushing, 1977), which have been shown to damp
chaotic behavior (Thiel, Schwegler, & Eurich, 2003) as well as synchronize coupled
systems at lower than normal coupling strengths (Sen, Dodla, & Johnston, 2005).
Atay and Karabacak (2006, p. 523) note, “To the extent that multiple delays
in maps can be considered as the counterpart of distributed delays, one might
anticipate further stabilization effects in such general networks.”

The second kind of experiment identified in Chapter 1, allows us to consider
cases where coupling may exist to upcoming states of x, as is the case for coupling
to a path laid out in space. Considering these future values of x, we may again
generalize in likewise fashion to obtain

h(x, y, t) =

∫ ∞
0

∫ ∞
0

K(s, u) (x(t+ u)− y(t− s)) ds du (2.3)

where u now takes on possible future times of x. Note that the limits for both
integrals are zero, so that t+ u and t− s remain disjoint. While it is possible to

7



2 Generalized Anticipatory Coupling Function

have chosen a coupling function in which the time arguments of x and y overlap,
a positive time difference between master and slave times is fundamental for the
existence of anticipating synchronization (Stepp & Turvey, 2010). As such, we
keep the time domains of x and y separate. Given this generalized coupling
function, we may explore a space of possible arrangements by exploring the space
of coupling strength functions K(s, u). For instance, we may recover the coupling
function in Eq. (1.1) by choosing

K(s, u) = kδ(s− τ)δ(u) (2.4)

where δ is the Dirac delta function. In a similar fashion, we may choose a con-
tinuous range of delays,

K(s, u) = k (H(s)−H(s− τ)) δ(u) (2.5)

where H(x) is the Heaviside step function. For clarity, note that Eq. (2.5) com-
bined with Eq. (2.3) results in the following coupling function

h(x, y, t) =

∫ τ

0

k (x(t)− y(t− s)) ds

Lastly, again considering an experiment of the second kind presented in Chapter
1, where road width under a perspective transform falls off like 2

π arctan 1
d after

distance d, a possible K(s, u) is

K(s, u) =
2

π
arctan

(
1

u

)
δ(s− τ)

providing for the coupling function

h(x, y, t) =

∫ ∞
0

2

π
arctan

(
1

u

)
(x(t+ u)− y(t− τ)) du (2.6)

That is, a system in which there is a quickly but infinitely diminishing coupling
to upcoming values along with self-feedback for a single delay. While the integral
of this choice for K(s, u) diverges, practical and physical limitations would con-
strain it in practice. More importantly, the point is that there is great flexibility
in the choice of coupling arrangement. The examples above are schematized in
Fig. 2.1.

2.2 Simulation Studies

As stated above, choosing different functions for K(s, u) results in different types
of delayed feedback coupling functions in support of anticipating synchronization.
It is possible to have a single delay in the feedback term, several delays, or even
a continuous range of delays. Likewise, it is possible to couple to the current
state of the master system or to one upcoming state, many upcoming states, or a

8



2.2 Simulation Studies

Figure 2.1: Illustrations of three different coupling arrangements. (top) Coupling
to the present state of the master with a single delayed feedback term.
(middle) Coupling to the present state of the master with a continuous
distribution of delayed feedback. (bottom) Coupling to a continuous
section of the master with a single delayed feedback term.

range of upcoming states. In order to make discussion of these possibilities easier,
a simple notation for a general class of coupling function can be defined. As u
and s represent master and slave time-shifts, respectively, we use U and S to
denote their place in the coupling function. A subscript denotes the multiplicity
of time-shift, e.g. 0, 1, n, or ∞ for, respectively, current time, one shift, many
shifts, or a continuous range. Using this notation, we may refer to the canonical
coupling function from Eq. (1.1) as U0S1, denoting coupling to current time with
one delayed feedback. With this notation in hand, we now turn to simulations of
combinations of interest, namely U0Sn and U∞S1.

2.2.1 Simulations of U0Sn

Simulations of the canonical delay-coupling system in Eq. (1.1) have been con-
ducted for the Rossler-Spring system (Stepp & Turvey, 2010), and certain features
of the resulting dynamics noted. Furthermore, Stepp (2009) saw evidence of these
same features in empirical data for another system from the U0S1 class. Below,
we conduct simulations of a Rssler-Spring system specified by Eqs. (1.2) and
(1.3) with a coupling function from the UoSn class for values of n ≥ 1, specif-
ically Eq. (2.3) with K given by Eq. (2.7). The Rssler system uses parameters
a = b = 0.1, c = 14, and the Spring system uses w = 1. Initial conditions of both
systems were kept constant between simulations, at x1 = 18.68, x2 = 3.432, x3 =

9



2 Generalized Anticipatory Coupling Function
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Figure 2.2: Measurements synchrony (ρ, left) and anticipation (τ∗, right) of simu-
lations of coupling class U0Sn, which has coupling to the present state
of the master, and some number of discrete feedback delays. Maxi-
mum delay ranged from 0 to 2 s, and number of equally distributed
delays ranged from 1 to 15. In this simulation each delay was given
equal weight.

20.9, y1 = 1, y2 = 0. Simulations were run in MATLAB using the dde23 delay
differential equation solver with differing lags for each as described below.

Two dimensions along which the discrete delay set can vary are number of de-
lays and maximum delay. For instance, the delay sets {0.3, 0.6} and {0.2, 0.4, 0.6}
differ in number, but not maximum, while {0.3, 0.6} and {0.4, 0.8} differ in maxi-
mum, but not number. To cover a region in this space of possible delay sets, many
simulations were run with maximum delay and feedback count combinations taken
from τ = {0.1, 0.2, . . . , 2} and n = {1, 2, . . . , 15}. For each combination, a delay
set was constructed by choosing n + 1 equally spaced delays from 0 to τ , then
dropping 0. For this collection of simulations, each delayed feedback term was
given equal weight scaled by the number of feedback terms. In terms of Eq. (2.3),
the system being simulated is given by

K(s, u) =

n∑
i

1

n
δ(s− τi)δ(u) (2.7)

with τi taken from the n-element delay set as constructed above.

Fig. 2.2a shows the maximum cross correlation measurement (Stepp & Frank,
2009) for each combination of feedback count and maximum delay. This measure-
ment is the highest correlation found at some time shift between two time series.
The time shift at which that happens is plotted in Fig. 2.2b. Please note that the
canonical case is present in here for n = 1. One clear feature of the plot is that
correlation remains high for higher delays when adding more feedback elements.
That is, adding more delays stabilizes synchronization. Again, this is consistent
with other reports in the literature.
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Figure 2.3: Measurements synchrony (ρ, left) and anticipation (τ∗, right) of sim-
ulations of coupling class U∞S1, which has coupling to a continuous
section of the master, and a single discrete feedback delay. Feedback
delay ranged from 0 to 2 s, and maximum look-ahead time ranged
from 1 to 8 s.

2.2.2 Simulations of U∞S1

In the following simulations, a single delayed feedback is combined with coupling
to a continuous section of upcoming values of the master system. This arrange-
ment is not supported explicitly by the dde23 solver used in previous simulations,
which only handles positive delay values. In order to conduct the simulation, a
master time series was solved using an ordinary differential equation solver and
the solution used within the slave DDE equations to later evaluate future values
as needed.

Again, there is a range of possible values for both feedback delay and amount
of look-ahead. Rather than taking all upcoming values into account, a section of
the master time series is considered. In equation form, the system being studied
here is given by

K(s, u) =
2

π
arctan

(
1

u

)
(H(u)−H(u− τm)) δ(s− τd) (2.8)

or, plugging in to Eq. (2.3), as an evaluated coupling function,

h(x, y, t) =

∫ τm

0

2

π
arctan

(
1

u

)
(x(t+ u)− y(t− τd)) du (2.9)

where τm is taken from the set {1, 2, . . . , 8} and τd is taken from {0.2, 0.4, . . . , 1}.
The ρ and τ∗ measures are presented in Fig. 2.3.
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3 Experiment 1

3.1 Introduction

Chapter 3 is an implementation of the first of the two forms of experiments pre-
viewed in Chapter 1. It is clear from previous studies of human manual tracking
that tracking can be anticipatory. Delayed feedback puts participants into a posi-
tion where they must anticipate in order to succeed at a task (Vercher & Gauthier,
1992; Foulkes & Miall, 2000; H. Voss, McCandliss, Ghajar, & Suh, 2007). As
noted in Chapter 1, there is some evidence (Stepp, 2009) to suggest that the rela-
tionship between delay and anticipation is similar to a phenomenon in dynamical
systems known as anticipating synchronization (H. U. Voss, 2000). State-based
synchronization of two dynamical systems x and y might not only be complete
(y(t) ≈ x(t)) or lagged (y(t) ≈ x(t− τ)), but also anticipating (Y (t) ≈ x(t+ τ)).
Anticipating synchronization, in one form, is instantiated by Eq. (1.1) in which
the vectors x and y are states of a master and slave system, respectively.

Stepp (2009) showed the dependence of anticipatory tracking on applied delay.
In Eq. (1.1), however, feedback delay τ is one of two important coupling param-
eters, the other being coupling strength k. As the paradigm used in Stepp (2009)
does not easily admit variable coupling strength, a new paradigm was selected.
In the new paradigm, feedback is discretized, and coupling strength is assumed
to scale with frequency of feedback. The ability to vary k allows one to explore a
(k, τ) parameter space.

Discrete feedback additionally allows for dealing with multiple delays. A single
delay is covered by the coupling function above, k(x− yτ ). Allowing for multiple
feedback states, each with some delay, the coupling function can be generalized
along the lines identified in Chapter 2 into class U0Sn using a discrete sum.

K(s, u) =

n∑
i

kiδ(s− τi)δ(u) (3.1)

for some number of delays represented by τi, and coupling weights ki.

3.2 Method

3.2.1 Participants

Sixteen students at the University of Connecticut participated in this study. The
participants were 7 women and 9 men of which 12 where undergraduate students
and 4 were graduate students. Of the 16, 15 were right handed and one was
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3 Experiment 1

left handed, identified by the hand with which the participant preferred to draw.
Participants gave informed consent and, in the case of undergraduates, received
class credit for their voluntary participation. The study was approved by the
University of Connecticut Institutional Review Board.

3.2.2 Design

Each participant viewed a computer display (39 cm diagonal, 800 × 600 pixel
resolution) at a distance of approximately 65 cm from screen to eye. A pressure
sensitive tablet (18 cm diagonal) sat 30 cm in front of the same display. Partici-
pants held a 14 cm stylus in their dominant hand that they could position on the
tablet in order to interact with the display. The tablet and stylus were visible to
the participant, and the background color of the display was set to a light gray
color given by RGB triplet (200, 200, 200).

Trials, each lasting 80 s, were organized into 3 blocks of 8 for a total of 24.
Typically, there was a 4 s gap between each trial, although participants were able
to rest between trials whenever they wished. During each trial a 20 × 20 pixel
blue square, the target, moved along the top of the screen according to a “chaotic
spring” function. Specifically, the on-screen sx coordinate of the trajectory was
generated by the x1 dimension of the system specified by Eq. (3.2).

ẋ1 = x2

ẋ2 = −
(

2π
(x3
α

+ β
))2

x1

ẋ3 = −x4 − x5
ẋ4 = x3 + αx4

ẋ5 = b+ x5(x3 − c)

(3.2)

This particular system maintains a relatively periodic oscillation, at the same
time varying chaotically in both amplitude and frequency. Therefore, the trajec-
tories produced are hard to predict in the chaotic sense, but remain trackable by
naive participants. Dimensions x3, x4, and x5 compose a standard Rössler oscilla-
tor. This chaotic system then drives the stiffness of a simple harmonic oscillator,
dimensions x1 and x2. For all trials, a = b = 0.1, c = 14, α = 100, and β = 0.3.
The system described by Eq. (3.2) is then a straightforward extension of simpler
systems that might produce more common sinusoidal or linear trajectories.

At the beginning of each trial, a 160 s time series was simulated from initial
conditions x1 = 1, x2 = 0, x4 = 3.432, x5 = 20.9, and x3 taken from a uniform
distribution on the interval [18.5, 19.5]. The first 80 s of this time series was
truncated in order to remove any transient behavior. Lastly, x1 was mapped to
on-screen coordinates sx by the mappings in Eq. (3.3).

sx =
(swidth − 2sxpad)(x1 −minx1

max (x1 −minx1)
+ sxpad (3.3)

where sxpad = 0.25swidth and swidth is screen width.

14



3.2 Method

While the simulation was displayed on-screen, a stream of dots was constantly
emitted from a 10 × 10 pixel green square, the cursor, at a variable speed and
frequency. Participants were instructed to use the stylus and tablet to control
the cursor to intercept the target with as many dots as possible. Each time a dot
intercepted the target, it briefly changed color to red, and a score was incremented
by 5 and displayed immediately above. The time taken for a dot to travel from the
cursor to target defines a delay, and therefore an amount of anticipation required
to succeed at the task.

Delays were randomized within each block from the set τ = {0.1, 0.2, . . . , 0.8}
s, in order to cover the critical region discussed in Stepp (2009). Horizontal and
vertical coordinates of tablet input, i.e. the movement of the hand, were captured
as y1 and y2, respectively. As such, the data collected parallel the states x and
y of the master-slave system described in Eq. (1.1). Coupling, and subsequently
synchronization, is considered to be between the hand and target. The time
delay between cursor and target plays the same supporting role as does yτ from
Eq. (1.1). More precisely, when there are multiple dots on screen, each ith dot
represents a delay τi, where 0 < τi < τ .

This is an interesting departure from the coupling function assumed in Stepp
(2009). As suggested above, this departure moves the coupling arrangement from
the canonical anticipating synchronization class U0S1 to U0Sn, which has an im-
plication for expected results as judged by simulations in Chapter 2.

3.2.3 Analysis

For the purpose of analysis, the first dimension of the target time series, x1,
was compared to the first dimension of the participant time series, y1. These
two dimensions correspond to the horizontal movements of each. To determine
both the level of synchrony, ρ, and amount of phase shift, τ∗, between x1 and y1
we used the maximum of the cross-correlation between the two (Stepp & Frank,
2009).

For each trial, these two quantities were calculated according to Eq. (3.4).

ρ = xcorrx,y(τ∗) = max xcorrx,y(τ) (3.4)

where xcorrx,y(τ) is the normalized cross correlation function of x1 and y1 with
lags from the interval τ = [−40, 40].

A second way to describe anticipatory performance is to not measure observed
τ∗ at all, but compare x and yτ directly. Using τ∗ as our lag of interest, we may
attain a high ρ if the participant is synchronizing well at some delay (namely τ∗).
This is not directly related to succeeding at the task, however. A correlation, ρτ ,
between x and y|τ gives a direct measurement of this.

Each participant produced three blocks of eight time series such that each (τ, k)
condition was repeated three times. While the first block was considered practice
and not analyzed, the second two blocks were analyzed using the methods above
to generate ρ, ρτ , and τ∗ measures for each trial. Participants in similar tasks
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Figure 3.1: Cross correlation analysis of participant data in Experiment 1. Plots
show synchrony measures ρ, ρτ , and anticipation τ∗ from left to right.

(Miall & Jackson, 2006) have shown adaptation across many trials. In the case of
the current task, however, differences between participant performance in Block
2 and Block 3 are negligible. As such, analyses below are conducted using mean
values per participant. Given our measures, we may examine the effect of τ on
each in turn.

3.3 Results

Fig. 3.1 depicts ρ, ρτ , and τ∗ measures as described above. The dependence of
these measures on τ are strikingly contrary to the expected behavior seen in Stepp
(2009) and predicted by simulations in the class U0S1 (for simulations see Stepp
& Turvey, 2010). This deviation, however, appears consistent with predictions
from simulations of the more general class U0Sn, which matches the coupling
arrangement used in this experiment.

A linear regression of τ∗ on τ < 500 ms shows a linear fit (R2 = 0.7602,
F (1, 50) = 158.5, ρ < 0.001) with slope 0.49 (CI: [0.4157, 0.5735]). A linear
regression of ρ on τ shows a moderate linear fit (R2 = 0.5432, F (1, 102) = 121.3,
ρ < 0.001) with slope -0.2051 (CI: [-0.2420,-0.1682]), but not a cubic fit (b3 CI:
[-0.8505, 1.1324]).

3.4 Discussion

In Stepp (2009), comparisons were made between standard features of simulated
anticipating synchronization and the synchronization behavior or participants in
a manual tracking experiment. In the present experiment, however, the structure
of delayed feedback is different due to the possibility of multiple feedback delays.
Employing the notation from Chapter 2, the present experiment comes from the
more general class U0Sn, and its empirical results show a relatively linear de-
pendence of ρ on τ , seemingly without a critical region where synchrony breaks
down. Increased stability for larger values of τ is one of the predictions of Chapter
2 simulations. It is feasible that extending the range of delays would result in
finding that critical region, which is a hypothesis that warrants further study.
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3.4 Discussion

The results from this experiment serve an important role connecting the gen-
eralized theory of anticipating synchronization to human anticipatory behavior.
While experiments such as Stepp (2009) establish consistence with anticipating
synchronization, those results in combination with the results of the present Ex-
periment 1 establish a much firmer predictive landscape. Employing other mod-
eling techniques, especially those requiring an internal model of the anticipated
system, are much less likely to replicate this pattern. Instead, we see that both
behaviors seen in Stepp (2009) and in the present experiment are predicted by
some process of synchronization relatively similar to those described in Chapter
2, most importantly, following the same alterations to coupling arrangement.
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4 Experiment 2: Navigation

4.1 Introduction

While manual tracking experiments such as Stepp (2009) and Experiment 1 of
Chapter 3 are clearly anticipatory and closely match prior anticipating synchro-
nization arrangements, they are somewhat artificial. This artificiality helps con-
nect empirical results to formal expectations, but more natural settings should
be investigated as well.

Navigating over a path at some speed is such a natural setting. Given that it is
a problem faced by all animals, it can be considered fundamental. Not only is this
task fundamental, it is also anticipatory, entailing traveling at speed with delayed
action. In order to probe this task in humans, a driving study was conducted
focusing on the interplay between control delay and anticipation.

4.2 Method

4.2.1 Participants

Eight students at the University of Connecticut participated in this study. The
participants were three women and five men, either undergraduate or graduate
students. All eight were right handed as defined by the hand with which the
participant preferred to draw. Participants gave informed consent and, in the
case of undergraduates, received class credit for their voluntary participation.
The study was approved by the University of Connecticut Institutional Review
Board.

4.2.2 Apparatus

A computer display (39 cm diagonal, 1024× 768 pixel resolution) was positioned
at a distance of approximately 26.7 cm (SD = 8.8 cm) from screen to eye. A
pressure sensitive tablet (18 cm diagonal) sat 25 cm in front of the same display,
although participants were free to move it to remain comfortable. Participants
held a 14 cm stylus in their dominant hand that they could position on the tablet
in order to interact with the display. The tablet and stylus were visible to the
participant.

Participants viewed a rudimentary driving simulator created using the Vi-
sionEgg, PyGame, and PIL Python modules. A typical view in the simulator
is depicted in Fig. 4.1. Using the hand-held stylus, participants could control the
visible steering wheel. Horizontal position of the stylus on the tablet was mapped
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4 Experiment 2: Navigation

Figure 4.1: Screenshot from the driving simulator, showing the road laid out
ahead of the driver, and a small steering wheel to indicate current
turning rate.

to a steering angle, θ, on the interval
[
−π2 ,

π
2

]
radians. This angle was used to

rotate the steering wheel during the simulation and also to set the turning rate
(rad/s) of an invisible virtual vehicle traveling with a constant speed, v. Within
the simulator, a configurable delay, τ , could be added between steering angle and
its effect on heading direction.

Eight winding roads were created from the x1 state of Eq. 3.2. To generate
a road, the system was simulated for 120 s with an x3 initial state chosen from
a uniform random distribution U(18.0, 19.0). The last 60 s of the x1 time series
was then used as the road path. To create a road with a left and right side, this
path was copied and shifted by 0.5 and then both curves were normalized to lie
within the interval [0, 100].

To construct an actual simulation, a road time-series was read from a text file
and a 2000 × 100 pixel image of the road was created. The simulator screen
was partitioned into sky and ground on the top half and the bottom half of the
screen, respectively. Onto this partitioning the road image was projected using a
perspective transform so that it vanished at the horizon. It is worth noting at this
point that viewing the upcoming road is tantamount to access to upcoming states
of the road. That is, with a single delayed feedback between driver and virtual
vehicle, these upcoming, essentially future, states of the road match anticipating
synchronization class U∞S1.

Eye Tracking. Before using the simulator, each participant was situated for
eye-tracking using an SR Research EyeLink II eye tracking system. Preparation
consisted of a standard EyeLink calibration routine started from within the driv-
ing simulator. Between each trial, calibration was checked and the participant
re-calibrated if the check failed.
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4.2 Method

Table 4.1: Primary and secondary time-series for road, hand, and eye

Time-Series Coordinates Description Derivation
H(t) display - (x, y) Stylus (hand) position Participant
Θ(t) ground - (θ) Vehicle turning rate (π/2)(Hx(t)−m)/m
E(t) display - (x, y) Gaze position Participant
D(t) ground - (φ) Vehicle heading

∫
Θ(t)dt

V (t) ground - (x′, z) Vehicle position
∫
vD(t)dt

R(t) ground - (x′) Road shape Experimenter

Ṙ(t) ground - (x′/z) Road heading dR/dz

R̈(t) ground - (x′/z2) Road turning rate dṘ/dz

4.2.3 Procedure

Before completing any experimental trials, participants were given three practice
trials, each lasting 60 s. During these trials, no external delay was applied to the
steering mechanism. Once familiar with the simulator in general, 16 trials were
presented in a randomized order. For each trial, a delay was inserted between
the movement of the on-screen steering wheel and the effect that steering angle
had on the virtual vehicle heading. Similar to Experiment 1, delays were taken
from the set τ = {0.05, 0.1, . . . , 0.8}. Once the participant signaled readiness, the
simulator was started and the participant attempted to steer so as to remain in
between the two lines of the virtual road (see Fig. 4.1). After 60 s, the simulator
stopped and the participant was allowed to rest for as long as desired. Upon
initiation of the following trial, eye-tracker calibration was checked and the next
simulator run began.

4.2.4 Analyses

In this experiment there are three primary functions of interest, corresponding to
eye (E), hand (H), and road (R). We may think of corresponding time-series, E(t)
and H(t), developing over time within a trial, and R(z) over spatial variable z.
In addition to these primary time-series, there are several secondary time-series
of interest (see Table 4.1), virtual vehicle position (V ), virtual vehicle turning
rate (Θ), virtual vehicle heading direction (D), and derivatives of R(z). In cases
where a time-series has multiple components, a subscript may be used to identify
a specific one, for instance Hx(t) denotes the x coordinate of H(t). During the
course of a trial, the participant is, in essence, asked to coordinate these three
functions in a particular way. As such, we wish to examine the coordination, or
synchronization, between each pair of time-series. Each time-series has certain
characteristics described below.

The road time-series, R(z), is produced by the first dimension of the now stan-
dard chaotic-spring system described by Eq. (3.2). A positive and negative bias is
added to R(z), which is then normalized to lie within [0, 100] in order to create an
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Figure 4.2: Road time-series R(z) generated from Eq. (3.2). See Fig. 4.3 for defi-
nition of x′ and z.
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Figure 4.3: Perspective mapping between simulation display and virtual road.
Display coordinates x and y are transformed to ground coordinates
x and z using horizontal and vertical gaze angles, and respectively.
Because the ground coordinate system is also two dimensional, the
reverse transform is possible.

enclosed road-like strip as in Fig. 4.2. Coordinates in this world-space are (x′, z).
Spatial derivatives over z, Ṙ(z) and R̈(z), take on the meanings of road heading
and turning rate respectively.

When presented to the participant, R(z) undergoes a transform composed of a
rotation and translation according to the participants virtual heading and position
on R(z) and a perspective transform mapping R(z) to a display-space with (x, y)
corrdinates on a viewing plane. These mappings are schematized in Fig. 4.3. The
eye time-series, E(t), exists in the display-space. Likewise, we can use the reverse
perspective transform in order to achieve an E(z). Raw E(t), however, consists
of gaze position on the (x, y) viewing plane over time.

Finally, the hand time-series, H(t), consists of the location over time of a hand-
held stylus on a pressure-sensitive tablet. This 2D coordinate system is set to be
the same as the viewing plane, but is mapped to an angle, Θ(t), by the following
mapping,

Θ(t) =
π

2

Hx(t)−m
m

(4.1)

where m is half of the viewing plane width. In order to replicate the act of
steering, Θ(t) is taken to be a rotation rate in radians per second.

During the course of the simulation, Θ(t) is integrated to produce a virtual
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heading, D(t). A velocity vector is composed of this heading and a constant
speed in world units, v, and further integrated to produce a virtual position,
V (t). The position time-series V (t) is now a time-series of (x′, z) coordinates. We
may also consider the time-series constructed of Vx′(t) at the points Vz(t), which
is then directly comparable to R(z).

The combination and coordination of E(t), H(t), and R(z) allows for a sit-
uation in which multiple slave systems are being driven by one master. Such
arrangements have been studied in general and with specific application to cir-
cadian synchronization by Stepp and Turvey (2010) and Stepp et al. (2011). It
is also conceivable, however, that a nested arrangement exists, for instance that
R(z) serves as master for E(t), which in turn serves as master for H(t). Lastly,
there may even be a combination of these arrangements such as a R(z)E(t) hybrid
serving as master for H(t).

4.3 Results

4.3.1 Hand-Road System

Of the time-series described above, R(z) is the only one that can be considered
an independent variable. In the language of coupled time-series it also acts as
a master system. As described above, the instructed task for the participant
is to stay between the lines of the road as best as possible. That is, maintain
synchrony between Vx(t) and R(Vz(t)). Synchrony plots, the familiar ρ and τ∗

measurements, for this pair are shown in Fig. 4.4. Participants have, however, only
one way to control V (t), which is by controlling the turning rate Θ(t). Therefore,
the control problem for the participant is to maintain synchrony between Θ(t)
and R̈ (Vx(t)), that is to match the turning rate of their vehicle to the turning
rate of the road. Synchrony plots for this pair are shown in Fig. 4.5.

Fig. 4.5 allows for comparison with standard features of anticipating synchro-
nization (H. U. Voss, 2000; Stepp, 2009). The measures ρ and τ∗ show distinctive
features in their relation to τ . Specifically, anticipating synchronization dynam-
ics predict a cubic shape for ρ, a low-variability linear relationship of τ∗ to small
values of τ , and sudden high-variability and weak relationship of τ∗ to values
of τ past some critical region. In the experiments of Stepp (2009), this critical
region appeared to be between 0.4 and 0.6 s. Each of these features exists in
Fig. 4.5. A linear regression of ρ on powers of τ up to degree 3 shows a cubic
shape (R2 = 0.96031, F (1, 126) = 96.7831, p < 0.001, b3 CI: [0.5196, 3.805]).
Values of τ∗ show a linear relationship the values of τ below 0.5 s (τ ≤ 300
ms: R2 = 0.9629, F (1, 38) = 103.8268, p < 0.001; τ ≤ 500 ms: R2 = 0.71872,
F (1, 78) = 20.4415, p = 0.0019467), at which point there is a sudden jump in
variability (see Fig. 4.5c).

Fig. 4.4 on the other hand, is a metric of performance of the task goal, but is
not directly related to anticipating synchronization. As such it shows some of the
features of anticipating synchronization, but only weakly so. A linear regression
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Figure 4.4: Cross correlation analysis comparing Vx(t) and R(Vz(t)). This pair
encapsulates the task goal presented to the participant. a) Maximum
cross correlation, b) time shift at maximum cross correlation, c) stan-
dard deviation of time shifts across participants, d) initial range of
time shift. Time shifts here are represented in ground units.
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Figure 4.5: Cross correlation analysis comparing Θ(t) and R̈(Vz(t)). This pair
closely matches the control problem presented to the participant. a)
Maximum cross correlation, b) time shift at maximum cross correla-
tion, c) standard deviation of time shifts across participants, d) initial
range of time shift. Time shifts here are represented in ground units.

25



4 Experiment 2: Navigation

Figure 4.6: Gaze and steering angle data for a driver in a real driving setting.
Reproduced from Land and Lee (1994)
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Figure 4.7: Gaze location and steering angle data from a simulated driving session.

of ρ up to a cubic term fits the data well (R2 = 0.95199, F (1, 14) = 79.3112,
p < 0.001), but the cubic term does not significantly contribute to the overall
model (b3 CI: [-0.8146,3.524]). Values of τ∗ at or below τ of 300 ms show a linear
relationship (R2 = 0.93138, F (1, 4) = 54.2922, p = 0.0018078), but those at or
below 500 ms do not (R2 = 0.0057061, F (1, 8) = 0.045911, p = 0.8357).

4.3.2 Eye-Road System

The behavior of the eyes while driving has been studied previously, for instance
by Land and Lee (1994). There, two drivers in real-world conditions drive down a
winding road while their gaze locations and steering angles were tracked. In terms
of Table 4.1, R(z) is defined by a real roadway, and data collected corresponded
to E(z) and D(t). Data from Driver 1 of this study is reproduced in Fig. 4.6.

Comparing Fig. 4.7, data from the simulator used in this study, to Fig. 4.6, it
appears that drivers in this simulated environment behaved similarly to Land and
Lees drivers. That is, gazes fall on the upcoming turns, and steering angle follows
the road. Land and Lee (1994) showed that drivers look at the road tangent
point. This is also true within the simulated environment, although it appears
differently in Fig. 4.7 than in Fig. 4.6. The difference is due to the portion of
road visible in each case.

Approaching the Eye-Road system as before, we may conduct a usual cross
correlation analysis. Comparing the road and gaze time series using a cross cor-
relation is non-trivial since gazes do not extend monotonically along the road, but
move back and forth in the z direction. One way to compare eye and road is to
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Figure 4.8: Cross correlation analysis of R(z) and E(z) at z values given by Vz(t).
a) Maximum cross correlation, b) gaze shift at maximum cross corre-
lation.

take the vehicle position at each point along the road and ask at what x′ coordi-
nate is the gaze location. That is, construct a time series using the z coordinate
of V (t) and the x′ coordinate of E(z). This time series is then compared to R(z).
Plots of ρ and τ∗ for this comparison are shown in Fig. 4.8.

Coupling between these two time series is not the type of anticipating synchro-
nization described in Chapter 2. Nevertheless, the cross correlation analysis does
show temporal relationships and synchrony. Unless the driver is looking straight
down, gaze location E(z) is always ahead (greater z coordinate) of V (t). This
shows up in Fig. 4.8 as a bias toward anticipatory τ∗. A notable departure from
usual patterns in the τ∗ plot is a near constant shift until synchronicity breaks
down.

4.4 Discussion

The driving simulator developed for this study provides for a minimal driving
environment and means to manipulate control delay. Regardless of its simplicity,
the simulator generates a rich data set as summarized in Table 4.1. Together,
these time series allow for detailed analysis of the eye-hand-road system in the
presence of control delay. While comparison between any of the time series in Ta-
ble 4.1 is possible, there are a few that are more interesting than others, especially
when investigating the relationship of empirical data to theoretical expectations.

As described above, in the present experiment the participant has a single de-
gree of freedom to control, the turning rate of the virtual vehicle. To stay on the
the road, the control problem is to match this turning rate to the turning rate
of the road at the current vehicle position. It is this comparison that shows the
greatest correspondence to properties of anticipating synchronization, as detailed
above. It is the case, however, that the coupling structure of the present exper-
iment is not the usual single master time, single delay type. Instead, as noted
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earlier, coupling is made to upcoming values as well. In Chapter 2, simulations
were conducted which match this type of coupling, for different delay times and
different amounts of upcoming values. These simulations help to weave together
the phenomenology seen in the time-series comparisons in Fig. 4.5 and Fig. 4.8,
that being the Θ(t) and R̈(Vz(t)) pair and the E(z) and R(z) pair. The shape
of Fig 4.5a is expected from typical anticipation synchronization behavior, but
the τ∗ plot in Fig 4.5d shows much increased anticipation (anticipation by more
than the imposed delay τ). A second unexpected feature is that the phase shift
between eye and road time-series is constant for changing τ . Both of these prop-
erties are expected when taking into account the effect of coupling to upcoming
values. As seen in the simulated τ∗ plot of Fig. 2.3b, τ∗ increases with increasing
τ at a slope greater than one. Additionally, there is a look-ahead value at which
anticipation is maximized across values of τ . This last feature suggests that a
constant shift between eye and road is also expected, if gaze direction functions
to maximize anticipation. Clearly these statements deserve further study to move
past the point of conjecture, but the theoretical predictions of Chapter 2 make
them plausible enough to do so.
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5 Anticipation and Organism-Environment
Dynamics

Anticipation can be described as a particular arrangement between organism and
environment. In simple models and simulations, such an arrangement is typically
taken to be a negative relative phase or similar measurement of one dynamic
behaving in accordance with the future of another. A particular conception of
the relationship between organism and environment, then, has implications for a
corresponding theory of anticipation. A view that places a great distance between
organism and environment would require a theory of anticipation in which the
organism would have a great deal of work to do in order to anticipate behavior of
the environment. On the other hand, a view that treats organism and environment
as more connected would have a more integrated approach to anticipation.

Organism-environment systems and their dynamics have been approached from
a variety of perspectives. Some of these perspectives have relevance to general
ecological concerns about how organism-environment relations should be formu-
lated (Turvey, 2009). For instance, lack of a priori boundaries or granularities
is one such concern. A minimal model of a system that does not take inside
and outside, such as organism and environment, to be necessarily separate is the
so-called CES model (Mahner & Bunge, 1997).

5.1 Minimal model of a system

For a system s, a minimal model of that system, according to Mahner and Bunge
(1997), comprises components of the system C(s), the environment of the system
E(s), and the structure of the system S(s). Structure can additionally be split
into internal structure SI(s), i.e. relationships between components of the system,
and external structure SE(s), i.e. relationships between components of the system
and the environment. The model is typically visualized as in Fig. 5.1.

The CES model, as it is known, is interesting in this context by the way it
defines environment for a system. Components C(s) are left somewhat nebulous,
but E(s) is clearly defined as just those components of the environment that in-
teract with C(s) via structural relationships SE(s). While there is no explicit
dynamics in the plain CES formulation, this does impart a type of implicit dy-
namic to E(s), if one considers that SE(s) is something that can change over time.
As such, the environment and system are defined in a relative, context-dependent
way. Defining an explicit dynamics for a CES-type formulation is the subject of
what follows.
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5 Anticipation and Organism-Environment Dynamics

E(s)
C(s)

Figure 5.1: The CES model. Showing the relationship between components of
the system C(s) and the environment of the system E(s). Arrows
between parts of C(s) and between C(s) and E(s) are the structure
of the system S(s), with thin arrows denoting internal structure, and
think arrows denoting external structure.

5.2 Dynamics of a minimal system

Beer (1995) describes an organism environment dynamics according the diagram
in Fig. 5.2. Organism and environment are modeled as two coupled nonau-
tonomous dynamical systems. Coupling comes in two pieces, a perception func-
tion P and an action function A. The functions P and A are taken broadly to
encapsulate all effects that an environment has on the organism and all effects
that an organism has on its environment, respectively. They are specifically not
limited to the effects usually attributed to a sensor or motor apparatus.

Taking the dynamical view of Beer (1995) along with the system description of
Mahner and Bunge (1997), Frank (2010) expresses the CES model in terms of a
dynamical system.

dIxO(t) = Sint(xO)dt

dExO(t) = SextE→O

dxO = dIxO + dExO

dxE = SextO→E(xO, xE)dt

(5.1)

Here xO is a state vector corresponding to C(s) and xE is a state vector corre-
sponding to E(s), leaving structural relationships as the only way for states to
change. This very large class of dynamical systems provides a way to deal with
dynamics at the system level without making a naive separation between system
and environment.

30



5.3 Lessons from theory and experiment

E

O
A

P

Figure 5.2: Embedded model of organism (O) and environment (E) interaction
(Beer, 1995). O affects E via an action (A) dynamic, E affects O via
a perception (P ) dynamic.

5.3 Lessons from theory and experiment

A feature that remains constant in all of the preceding theoretical and empirical
discussions is the presence of a time shift between two dynamical systems. This
shift is often manifested by delayed feedback within a single system, but, especially
given the generalizations in Chapter 2, we see that time shifts can take many
forms.

Delay in physical systems is ever present due to the simple fact that all events
take some amount of time to progress; nothing happens instantly. With regard
to anticipation, this is fundamental. Because events take time to unfold, the
possible future of a system is constrained, and anticipation is made possible. As
such, there is a deep connection between anticipation and delay.

Additionally, we see from above that the distribution of delay matters for the
anticipatory behavior of the system. For instance, having a variety of feedback
at different delay times tends to stabilize dynamics. This is evident from the
deviation in Experiment 1 from more standard behavior (e.g. Stepp, 2009).

Lastly, it appears to be a general feature that as delay time increases, so does
anticipation time. In the original H. U. Voss (2000), this correspondence is shown
analytically, and is supported in several subsequent treatments and is evident in
Experiments 1 and 2 as well as simulations in Chapter 2.

5.4 Examples of many delays

In the previous section delays are observed to be important, if not fundamental,
for anticipation. Also observed is the physical systems cannot help but contain
delays. Delay is often a consequence of that fact that it takes time for matter to
move from one location to another, such delay known as transport delay. This sort
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5 Anticipation and Organism-Environment Dynamics

N1

N2

N5

N3

N4

Figure 5.3: Five-node random graph. Solid lines are arcs of positive gain, dashed
are arcs of negative gain.

of delay can be relatively easily described in a chemical system where transport
proceeds primarily via diffusion. In such a system delay is a consequence of
diffusion rate.

The slime mold plasmodium presents an example chemical system in which
transport delay plays a role. During the aggregation phase of the slime mold
life cycle, extracellular cAMP (cyclic adenosine monophosphate) is expelled by
individual cells and adds to a collective chemotactic environment which affects all
cells in the population (Gross, Peacey, & Trevan, 1976; Konijn, 1972). Diffusion
of cAMP from a particular cell out into the intercellular environment is a clear
example of transport delay.

The dynamics of the slime mold system, at an abstract level, consist of dis-
crete nodes connected by a medium with transport delay. A candidate model
system matching this arrangement is the reservoir of a liquid state machine. A
liquid state machine (Maass et al., 2002; Burgsteiner et al., 2007), or LSM, is a
randomly connected graph, the reservoir, where nodes receive time varying in-
put from their incoming connections and produce time varying outputs on their
outgoing connections. Typically, a linear output layer is trained to extract some
arbitrary function from the dynamics of the reservoir. While similar in principle to
a neural network, LSMs are not necessarily meant to be analogous to a biological
network of any sort. Being randomly connected, LSMs are recurrent. Addition-
ally, connection gains or weights are fixed upon creation of the network. The
structure of LSMs results in a highly non-linear spatio-temporal pattern among
the nodes given even a single input.

As a very small example, a 5-node random graph is shown in Fig. 5.3. Solid
lines have positive gain, dashed lines have negative gain. N1 was defined to be an
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5.5 LSM in Dynamical CES
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Figure 5.4: Continuous relative phase φ between input and N2, showing that N2
has a negative phase relationship to the input node, i.e. N2 is leading
the input.

input node, and a simulation of Eq. (3.2) was used to set its value. Values of other
nodes were set according to Eq. (5.2). The continuous input from Eq. (3.1) was
simulated using a discrete time integrator (Runge-Kutta) at 100 Hz. The network
was updated on a sample by sample basis using this numerical simulation.

vi(m) = 0.9vi(m− 1) +
1∑N

j=1 |Gji

N∑
j=1

vj(m− 1)Gji (5.2)

where vi(m) is the value of node vi at time m, N is the total number of nodes,
and G is a graph matrix with entries Gij = 1 for a positive gain connection from
i to j and Gij = −1 for negative gain connections.

As depicted in Fig. 5.4, N2 comes to anticipate the input. Fig. 5.3. in combi-
nation with the discussion of delay above provides an intuition as to why this may
be. We see a short path directly connecting N1 and N2; all other connections
provide various longer paths. Given the loop between N4 and N5, there is no
longest path from N1 to N2.

Anticipation within the network (as some population of nodes with negative
relative phase) is emergent in the “predictive, epistemological” sense of (O’Connor
& Wong, 2009). The prediction from theoretical and empirical results is that,
provided some distribution of feedback delays, some population of nodes will
become anticipatory.

5.5 LSM in Dynamical CES

We may quickly identify elements of an LSM with elements of the CES model.
Speaking in terms of LSM as a graph, vertices correspond to C(s) and edges to
SI(s). Input into the network comes from some external states E(s), and their
coupling to the network is via SE(s). A greater challenge is to express the LSM
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5 Anticipation and Organism-Environment Dynamics

in dynamical CES terms. To do so requires accurate characterization of each S(s)
function above.

Step one is to identify candidate states to make up xO and xE . For these
graphs, however, there is a step zero where we must define at what level we
consider the system in question. For instance, a single node may be a system by
itself, with all other connecting nodes comprising its environment. Likewise, we
may consider a collection of nodes to be the system. Finally, this collection of
nodes might contain the entire graph, at which point only the input is part of the
environment. To remain the most general, we will treat a collection of nodes as
a system. In this way, we may characterize the other choices as the special cases
of either a collection of one node or all nodes.

The components of our system are then defined to be some set of nodes nO ∈ N ,
where N is the set of all nodes. The environment is, by the CES definition,
nE = {n : Gnx = 1, x ∈ nO}, where G is the adjacency matrix of the graph.
Provided these sets of nodes, the state vectors xO and xE are a partition of v
from Eq. (5.2). That is xO = {vi : ni ∈ nO} and xE = {vi : ni ∈ nE}.

Structural links, speaking in CES terms, are those linkages that can affect the
state of a component. Internal structure, Sint(xO) are all links between elements
of nO. We also must consider outgoing links, SO→Eext (xO, xE) and incoming links,
SE→Oext (xO, xE). For this particular system, there is only one type of dynamics.
As such, all S(s) functions are formally equivalent dynamically. A second issue
is that Eq. (5.2) is time-discrete. Fortunately we may write down the Dynamical
CES formulation as time-discrete as well.

As a first step, the adjacency matrix G may be reordered with nodes nO before
nodes nE so that G is a block matrix,

G =

(
GOO GOE
GEO GEE

)
(5.3)

where GXY is an adjacency matrix concerning connections from set X to set
Y . Provided this ordering, it is then possible to write four versions of Eq. (5.1)
with the full G replaced by the four block elements in Eq. (5.3). This reordering
and rewriting of the dynamics establishes four systems corresponding to their
organism-environment relation, with differing semantics depending on the choice
of nO at the outset.

5.6 Delay in a recurrent network

Propagation of states throughout a recurrent network such as LSM reservoirs can
be characterized by two processes, recursion delay and dilution. Both are effects
of repeated function application. Each time the update function is applied to
incoming connections at a particular node, a unit of time is added, and states are
mixed together. To make this clear, consider again the small graph in Fig. 5.3
with node N1 as the input state. Fig. 5.5 shows the full history of N2 at time-step
6. The figure is showing that N2 at time 6 is expanded to a function of the input
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5.7 Discussion

Figure 5.5: Expansion of the value of N2 at time 6. The input time series is
labeled v1 through v5, and its presence is highlighted by the dashed
squares. At each time step, the value of a state is a function f of
states connected to it.

node, N5, and N3, all at time 5. The value of N5 at time 5 is in turn a function
of the input node and N4 at time 4. In this fashion the value of N2 at time 6 can
be fully expanded.

What Fig 5.5 illustrates is that at any time, here time-step 6, the value of a
node contains traces of the full history of the nodes connecting to it. For the
example of N2(6), the expansion shows all past values of the input, N4 and N5.
In this example it is also clear that function application is equivalent to time.
Expansion by one function application is exactly equivalent to regressing by one
time step. Each time the function is applied to one or more nodes, however, the
time series of those nodes become diluted. As such, the histories present in the
expansion of Fig. 5.5 are transformations of the past.

5.7 Discussion

Anticipation through coupling, by definition, requires consideration of both an-
ticipated and anticipating system. For a wide variety of cases, including those
presented in Chapters 3 and 4, the systems to be considered are organism and en-
vironment. The CES model promotes a relatively unified organism-environment
system, where both pieces are necessarily considered together. As such, it appears
to be the right system model for anticipation qua anticipating synchronization.
As a minimal model of a system, the CES model serves well to outline the ab-
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5 Anticipation and Organism-Environment Dynamics

stract relationship between organism and environment, but it lacks appropriate
concreteness for direct connection to anticipating synchronization. Particular
kinds of recurrent networks, exemplified by the reservoirs used in LSMs, have the
same abstract structure, such that a mapping can be made between them. This
mapping serves to marry the concrete syntactic nature of anticipating synchro-
nization with the semantics of organism-environment systems. Simulations on
LSM reservoirs producing anticipation may be analyzed with respect to dynami-
cal synchronization on the syntactic side, or with respect to organism-environment
on the semantic side.
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6 Discussion

In chapter 2, the delay-coupling arrangement from H. U. Voss (2000) is generalized
to accommodate different numbers and types of time-shifted couplings. This
generalization helps to define classes of systems based on the type of coupling. A
notation labels the classes UmSn, according to the number (m and n) of time-
shifted couplings to points in the driver (U) or driven (S) system. Simulations of
these classes using the Rössler-Spring system show particular behaviors for the
different classes of couplings.

Empirical results for class U0S1 already show agreement with theoretical ex-
pectations. Extending these results in line with Chapter 2, Chapters 3 and 4 set
up experiments matching other classes, U0Sn and U∞S1, respectively. Again, the
empirical results show agreement with theoretical expectations.

At this point it is prudent to ask what these results mean and what they
do not. The point of this work is not to describe a better working model for
anticipation. What these results show is that variations in the phenomenology
of real anticipatory behavior can be explained by a dynamical system that does
not rely on predictions from an inference-based, small scale model. It is not
necessarily that the dynamical model works better than others, but that it works
at all.

This type of anticipation is described in a way that it can apply to all levels
of organism. That is, anticipation at the level of general principle. Given this
principle, it is expected that organisms become anticipatory. Anticipation is
another way of synchronizing, which is a phenomenon already known to happen
opportunistically (Pikovsky, Rosenblum, Kurths, & Hilborn, 2003).

Chapter 3 presents a manual tracking task that differs from the task used in
Stepp (2009). Participants are still asked to synchronize with the current state of
a master time-series, but instead of receiving feedback at a single delay, feedback
is presented at multiple delay times. This change is analogous to changing from
class U0S1 to U0Sn with n > 1. Fig. 2.2 shows how the Rössler-Spring system
reacts to such a change, which is mirrored qualitatively by participant behavior.
Specifically, anticipating synchronization is stable at longer delay times, appar-
ently due to multiple delays, and anticipation makes up for approximately 40-50%
of the imposed delay.

Chapter 4, at least in abstraction, is also a deviation from the U0S1 class, this
time adding coupling to not just the present state of a master time-series, but to
a section of upcoming values. This type of coupling is also simulated in Chapter 2
for a Rössler-Spring system, and qualitative features are replicated. The constant
shift between gaze and road is predicted by there being a particular look-ahead
value that maximizes anticipation. Furthermore, anticipation with coupling to
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6 Discussion

upcoming values is expected to increase at a greater rate than imposed delay.
The high level question being addressed by this research is “Where does an-

ticipation come from?” Anticipatory behavior clearly exists, from single celled
organisms to humans. Why that is true is not nearly so clear. One way to treat
the preceding results is as a suggestion that anticipation arises naturally. Ex-
tremely simple organisms show anticipatory behavior (Saigusa et al., 2008). If
anticipation arises naturally then of course simple organisms will exploit it.

There is more to the suggestion that anticipation arises naturally; why it would
do so. One thread that remains constant throughout the previous chapters is that
of time-shifted coupling, especially delayed feedback. Events in this universe take
time to happen; nothing happens instantly. This fundamental property of the
universe has anticipation as a consequence. Anticipation does not always obtain,
but support for it is woven into the lowest levels of physical law.
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